14 research outputs found

    Comparison of Intralaminar and Interlaminar Mode-I Fracture Toughness of Unidirectional IM7/8552 Graphite/Epoxy Composite

    Get PDF
    The intralaminar and interlaminar mode-I fracture-toughness of a unidirectional IM7/8552 graphite/epoxy composite were measured using compact tension (CT) and double cantilever beam (DCB) test specimens, respectively. Two starter crack geometries were considered for both the CT and DCB specimen configurations. In the first case, starter cracks were produced by 12.5 micron thick, Teflon film inserts. In the second case, considerably sharper starter cracks were produced by fatigue precracking. For each specimen configuration, use of the Teflon film starter cracks resulted in initially unstable crack growth and artificially high initiation fracture-toughness values. Conversely, specimens with fatigue precracks exhibited stable growth onset and lower initiation fracture toughness. For CT and DCB specimens with fatigue precracks, the intralaminar and interlaminar initiation fracture toughnesses were approximately equal. However, during propagation, the CT specimens exhibited more extensive fiber bridging, and rapidly increasing R-curve behavior as compared to the DCB specimens. Observations of initiation and propagation of intralaminar and interlaminar fracture, and the measurements of fracture toughness, were supported by fractographic analysis using scanning electron microscopy

    Experimental Reexamination of Transverse Tensile Strength for IM7/8552 Tape-Laminate Composites

    Get PDF
    Due to the observed dependence of transverse-tensile strength, YT, on test geometry and specimen size, there is no consensus regarding a test method that can uniquely measure YT. This study reexamines characterization of YT by comparing results from established flexure tests with results from a new tensile test that exhibits consistent failure in the gage region. Additionally, the effects of surface preparation and direction of transverse fracture are investigated. Results show that YT is inversely proportional to specimen volume and surface roughness, and is insensitive to direction of transverse fracture. The relationship between specimen volume and YT is adequately captured by Weibull strength-scaling theory, except at the tails of the YT distributions. However, specimens exhibited microcracking prior to failure, which violates the weak-link assumptions of the Weibull theory. These findings highlight the challenges of using deterministic YT values in progressive damage analysis

    Observation of Intralaminar Cracking in the Edge Crack Torsion Specimen

    Get PDF
    The edge crack torsion (ECT) test is evaluated to determine its suitability for measuring fracture toughness associated with mode III delamination growth onset. A series of ECT specimens with preimplanted inserts with different lengths is tested and examined using nondestructive and destructive techniques. Ultrasonic inspection of all tested specimens reveals that delamination growth occurs at one interface ply beneath the intended midplane interface. Sectioning and optical microscopy suggest that the observed delamination growth results from coalescence of angled intralaminar matrix cracks that form and extend across the midplane plies. The relative orientation of these cracks is approximately 45 deg with respect to the midplane, suggesting their formation is caused by resolved principal tensile stresses arising due to the global mode-III shear loading. Examination of ECT specimens tested to loads below the level corresponding to delamination growth onset reveals that initiation of intralaminar cracking approximately coincides with the onset of nonlinearity in the specimen's force-displacement response. The existence of intralaminar cracking prior to delamination growth onset and the resulting delamination extension at an unintended interface render the ECT test, in its current form, unsuitable for characterization of mode III delamination growth onset. The broader implications of the mechanisms observed in this study are also discussed with respect to the current understanding of shear-driven delamination in tape-laminate composites

    A Test for Characterizing Delamination Migration in Carbon/Epoxy Tape Laminates

    Get PDF
    A new test method is presented for the purpose of investigating migration of a delamination between neighboring ply interfaces in fiber-reinforced, polymer matrix tape laminates. The test is a single cantilever beam configuration consisting of a cross-ply laminate with a polytetrafluoroethylene insert implanted at the mid-plane and spanning part way along the length of the specimen. The insert is located between a 0- degree ply (specimen length direction) and a stack of four 90-degree plies (specimen width direction). The specimen is clamped at both ends onto a rigid baseplate and is loaded on its upper surface via a piano hinge. Tests were conducted with the load-application point located on the intact portion of the specimen in order to initiate delamination growth onset followed by migration of the delamination to a neighboring 90/0 ply interface by kinking through the 90-degree ply stack. Varying this position was found to affect the distance relative to the load-application point at which migration initiated. In each specimen, migration initiated by a gradual transition of the delamination at the 0/90 interface into the 90-degree ply stack. In contrast, transition of the kinked crack into the 90/0 interface was sudden. Fractography of the specimens indicated that delamination prior to migration was generally mixed mode-I/II. Inspection of the kink surface revealed mode-I fracture. In general, use of this test allows for the observation of the growth of a delamination followed by migration of the delamination to another ply interface, and should thus provide a means for validating analyses aimed at simulating migration

    A Model for Simulating the Response of Aluminum Honeycomb Structure to Transverse Loading

    Get PDF
    A 1-dimensional material model was developed for simulating the transverse (thickness-direction) loading and unloading response of aluminum honeycomb structure. The model was implemented as a user-defined material subroutine (UMAT) in the commercial finite element analysis code, ABAQUS(Registered TradeMark)/Standard. The UMAT has been applied to analyses for simulating quasi-static indentation tests on aluminum honeycomb-based sandwich plates. Comparison of analysis results with data from these experiments shows overall good agreement. Specifically, analyses of quasi-static indentation tests yielded accurate global specimen responses. Predicted residual indentation was also in reasonable agreement with measured values. Overall, this simple model does not involve a significant computational burden, which makes it more tractable to simulate other damage mechanisms in the same analysis

    Processing and Damage Tolerance of Continuous Carbon Fiber Composites Containing Puncture Self-Healing Thermoplastic Matrix

    Get PDF
    Research at NASA Langley Research Center (NASA LaRC) has identified several commercially available thermoplastic polymers that self-heal after ballistic impact and through-penetration. One of these resins, polybutadiene graft copolymer (PB(sub g)), was processed with unsized IM7 carbon fibers to fabricate reinforced composite material for further evaluation. Temperature dependent characteristics, such as the degradation point, glass transition (T(sub g)), and viscosity of the PBg polymer were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic parallel plate rheology. The PBg resin was processed into approximately equal to 22.0 cm wide unidirectional prepreg tape in the NASA LaRC Advanced Composites Processing Research Laboratory. Data from polymer thermal characterization guided the determination of a processing cycle used to fabricate quasi-isotropic 32-ply laminate panels in various dimensions up to 30.5cm x 30.5cm in a vacuum press. The consolidation quality of these panels was analyzed by optical microscopy and acid digestion. The process cycle was further optimized based on these results and quasi-isotropic, [45/0/-45/90]4S, 15.24cm x 15.24cm laminate panels were fabricated for mechanical property characterization. The compression strength after impact (CAI) of the IM7/pBG composites was measured both before and after an elevated temperature and pressure healing cycle. The results of the processing development effort of this composite material as well as the results of the mechanical property characterization are presented in this paper

    Processing and Characterization of Carbon Nanotube Composites

    Get PDF
    Recent advances in the synthesis of large-scale quantities of carbon nanotubes (CNT) have provided the opportunity to study the mechanical properties of polymer matrix composites using these novel materials as reinforcement. Nanocomp Technologies, Inc. currently supplies large sheets with dimensions up to 122 cm x 244 cm containing both single-wall and few-wall CNTs. The tubes are approximately 1 mm in length with diameters ranging from 8 to 12 nm. In the present study being conducted at NASA Langley Research Center (LaRC), single and multiple layers of CNT sheets were infused or coated with various polymer solutions that included commercial toughened-epoxies and bismaleimides, as well as a LaRC developed polyimide. The resulting CNT composites were tested in tension using a modified version of ASTM D882-12 to determine their strength and modulus values. The effects of solvent treatment and mechanical elongation/alignment of the CNT sheets on the tensile performance of the composite were determined. Thin composites (around 50 wt% CNT) fabricated from acetone condensed and elongated CNT sheets with either a BMI or polyimide resin solution exhibited specific tensile moduli approaching that of toughened epoxy/ IM7 carbon fiber unidirectional composites

    Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Get PDF
    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described

    Puncture-Healing Thermoplastic Resin Carbon-Fiber Reinforced Composites

    Get PDF
    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described

    Characterization of Hybrid CNT Polymer Matrix Composites

    Get PDF
    Carbon nanotubes (CNTs) have been studied extensively since their discovery and demonstrated at the nanoscale superior mechanical, electrical and thermal properties in comparison to micro and macro scale properties of conventional engineering materials. This combination of properties suggests their potential to enhance multi-functionality of composites in regions of primary structures on aerospace vehicles where lightweight materials with improved thermal and electrical conductivity are desirable. In this study, hybrid multifunctional polymer matrix composites were fabricated by interleaving layers of CNT sheets into Hexcel IM7/8552 prepreg, a well-characterized toughened epoxy carbon fiber reinforced polymer (CFRP) composite. The resin content of these interleaved CNT sheets, as well as ply stacking location were varied to determine the effects on the electrical, thermal, and mechanical performance of the composites. The direct-current electrical conductivity of the hybrid CNT composites was characterized by in-line and Montgomery four-probe methods. For [0](sub 20) laminates containing a single layer of CNT sheet between each ply of IM7/8552, in-plane electrical conductivity of the hybrid laminate increased significantly, while in-plane thermal conductivity increased only slightly in comparison to the control IM7/8552 laminates. Photo-microscopy and short beam shear (SBS) strength tests were used to characterize the consolidation quality of the fabricated laminates. Hybrid panels fabricated without any pretreatment of the CNT sheets resulted in a SBS strength reduction of 70 percent. Aligning the tubes and pre-infusing the CNT sheets with resin significantly improved the SBS strength of the hybrid composite To determine the cause of this performance reduction, Mode I and Mode II fracture toughness of the CNT sheet to CFRP interface was characterized by double cantilever beam (DCB) and end notch flexure (ENF) testing, respectively. Results are compared to the control IM7/8552 laminate
    corecore